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ABSTRACT: Editing of data collected for preparation of statistics is a time and resource consuming process. This paper
presents experiments with artificial neural networks as a potential tool for increasing the effectiveness of statistical editing and
imputation. To maintain accuracy in resulting statistics, the possibility of deriving reliable accuracy predictions is also discussed.

1. Introduction

Producers of statistics have always been concerned about the quality of their statistics. One hundred
years ago, the name data editors was used on the staff who had the responsibility to inspect and control
the data collected from the respondents. The appearance of programmed electronic computers 50 years
ago offered opportunities to automate the editing. Already early in the 1960s, computerized editing of
the U.S. Agricultural Census data was for example extensively used, but it is estimated that 20 to 40
percent of the total costs of a survey or a census are still used for editing [Granquist 1997]. To look
for new opportunities to reduce the resources required for editing is therefore a continuous challenge.

The purpose of this paper is to discuss an approach to statistical editing, the main issue of which is to
use available information about statistical units more effectively in control and imputation. This is no
new idea. It was discussed in international meetings as functional editing more than 30 years ago
[Nordbotten 1963]. Because of more efficient technical tools and more available information,
functional editing is far more realistic today than at the time it was first discussed. This paper will
discuss the editing and imputation process, and some aspects of neural network methods, and will
conclude with illustrations based on experiments with the functional approach carried out on real life
data by means of artificial neural networks. Examples of similar experiments have also been discussed
by others [Roddick 1993, Teague and Thomas 1997].

2. Problem: Editing and Imputation

Different types of errors are introduced in preparation of statistics. The survey design introduces
design errors, data collection introduces register, sampling, interviewer and response errors, while the
aggregation and dissemination processes are the sources of processing and presentation errors.
Statistical data editing plays a special role in preparation of statistics because it aims at reducing the
effect of errors in other statistical processes. In editing, we distinguish betweendetecting errors and
correcting errors. Detection of errors is carried out by a control process, while correction of errors is
done by means of an imputation process.

When discussing editing, it is useful to distinguish among three versions of data compiled about a
statistical unit: 1) the raw or collected values, 2) the edited values obtained by the editing process to be
investigated, and 3) the farget values which we would have obtained if an ideal measurement had been
performed. Frequently, the values from an edit performed by subject matter experts is considered to
give a satisfactory approximation to target values.
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A statistical estimate, Y, is a measurement of a population target, e.g. a total, Y, based on values for
individual statistical units. We shall refer to D=|Y“Y|, the deviation of the estimate from the target,
as the accuracy of the estimate. Since Y is usually unknown, the accuracy must be predicted and we

denote the predicted accuracy by D .

Consider a population of N statistical units. Without a loss of generality, we assume that each unit is
characterized by a single y-variable value and a set of K x-variable values. The y-value is an unknown
value of a variable observed with value y . The x-values are background or auxiliary data available for
the statistical unit. The source of these background values may be administrative registers, previous
surveys, etc. We denote the individual observed values as y; “and the target values as y;, i=1..N, and
the auxiliary values in the x-set as x;, i=1..N and k=1..K.

The difference between observedy, “and target y; values is the individual error e,=y,; -y,. The value of
the error is assumed to be the cumulated effect of all factors influencing the outcome of an observation.
We assume that ¢;, i=1..N, can be considered as independent random variables with a common mean
m, and variance v,. An estimate Y’=2"y.’of all unedited data can therefore be considered as
stochastic and be expected to vary if the observation is repeated.

Since the accuracy of Y’ does not manifest itself before the statistical information is used, producers of
statistics want to issue an accuracy declaration or a guarantee to the users about the statistical total.
The declaration can, for example, be based on a predeterminedaccuracy requirement C. A narrow
accuracy boundary C implies declaration of high quality estimates, and vice versa. Since the purpose
of editing is to increase quality, the edited data should therefore be accompanied by some kind of
accuracy predictions on which accuracy declarations for the derived statistics can be based.

If the accuracy prediction D “of an estimate Y’ satisfies the condition D '<C, the estimate will be
declared to have required accuracy; if not, the estimate will not be declared accurate. It is important
that the accuracy predictions have a low probability Pr to be incorrect. By means of the Central Limit
Theorem, bounds for such a probability can be derived if the estimate is composed of a satisfactory
number of components. If not, we may rely on the Tchebycheff Inequality Theorem to specify the
bounds.

3. New Methods
3.1 ANN Summary

Artificial neural networks (ANN) were first presented in a paper by McCulloch and Pitts with the aim
to explain neuro-physiological phenomena [McCulloch 1943]. Later, a variety of ANN models have
been formulated for different problems, learning algorithms for numerical computation of the
parameters of the networks have been developed, and a variety of neural network applications have
appeared in different fields.

The type of ANN used in connection with the problems discussed in this paper is so-called
“feed-forward”, multi-layer networks which can be considered as logistic discriminant functions or
non-linear regression functions. Input terminals receive values corresponding to explanatory variables,
while an output neuron provides values corresponding to a dependent variable. In between are layers
of hidden neurons. Each input terminal and hidden neuron is interconnected with all neurons in the
next layer, meaning its value is distributed through all connections to the receiving neurons. The
individual connection is characterized by a parameter value called the weight by which the input value
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is multiplied. A neuron transforms the sum of all received weighted input values to an output value
according to an activity function.

The development of an artificial neural network consists of two steps: 1)the choice of network topology
and activity functions for the neurons, and 2) the determination of the connection weight parameters of
the network. The first step must be done according to the problem for which the network should be
applied, the success of which depends to a large extent on the developer’s experience and creativity.
The second step is carried out by means of a learning algorithm. The learning algorithm for the type of
networks discussed in this paper is known as the Backpropagation algorithm.

The Backpropagation algorithm is an iterative, numerical algorithm based on stepwise adjustment of
parameters according to the gradient decent principle and became generally available about 10 years
ago [Rumelhart 1986]. It requires a set, called the training set, of examples of input and output value
pairs from the domain to which the network will be applied. The learning algorithm searches for a set
of weight values characterizing the connections among the active nodes of the net such that the net will
reproduce the output values with the minimum mean square error given the input values of the set of
examples. Modern implementations of this and other training algorithms offer several options for the
training, such as how to initialize the weights, the size of learning steps, when to stop the iteration, etc.

3.2 Relationship to Statistical Methods

A single layer neural network which uses nodes with sigmoid activity functions can, subject to certain
conditions as to how it is trained, be considered as expressing a conditional probability, a logistic
discriminant function or a multivariate logarithmic regression function, and can be presented as:

v/ = 11+ exp-fwy + Lyw *x,]) fori= LN, M

where the y “is the probability or dependent variable corresponding to the output of the net and thex’s
are independent variables corresponding to the inputs to the net. Thew’s are parameters known as
connection weights of the net which have to be determined.

To obtain better results, the network is designed as multi-layered. A network with two layers of
weights connecting the inputs to a set of hidden neurons can, for example, be presented as:

yi'=1/{1 + exp-[w, + Y w, * 1/(1 + exp -[w, + };wy *x; )]} fori=1..N. )
It can be proved that a 3-layer network can represent a very large set of different functions.

There are several ways to draw statistical conclusions about the accuracy of statistics based on results
from a neural network [Bishop 1995]. One simple way is to draw a new random sample independent of
the training sample from the population, obtain its true values, compute predicted values of the
variables by means of the network, and estimate the statistical characteristics of the deviations. This
approach was used for the second experiment presented in this paper. Obviously, this requires that
resources are available for observing both samples. Use of jack-knife methods is another approach
which has the advantage that only one sample is needed, but it requires significantly more computing
[Moody 1993].
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3.3 Imputation Estimates

Trained networks give a basis to impute individual values for all units not observed, and open the use
of a simple estimator for computing the estimates of totals,

Y'=)"y + E:HN)’_; , (3)

in which the first term is the sum of the target values known, and the second, the sum of the imputed
values. These estimates are called imputation estimates [Nordbotten 1997].

Assuming the imputed values have a random error component, the root mean square error of the
imputation estimate of a total is

RMSE = v/ (N-1) * mse , 4)

where mse is the mean square error for the residual error variables estimated from the second sample
mentioned above. As long as the squared bias component is small compared with the variance ofmse,
RMSE can be used in the same way as the sampling error from the sampling theory [Hansen 1953].

If the conditions permit to rely on the Central Limit Theorem, we can use the theorem as justification
for a probability prediction about an upper bound for the imputation estimate,

PR(|Y-Y| < 2*RMSE) =~ 0.95, (5)

saying that only 1 out of 20 estimates is expected to deviate more than 2 times itsSRMSE. If the
statistical agency wants to release only estimates of totals which do not deviate from the true value with
more than 5 units, we should reject estimates with RMSE >5/2 and expect that 1 out of 20 rejected
estimates in fact was acceptable.

If the estimate is based on a sample which is too small for relying on the Central Limit Theorem, the
Tchebycheff Inequality Theorem,

PR(|Y-Y| < 3*RMSE) < 9/10 = 0.9, ©)

can be another possibility for accuracy predictions. This theorem tells us that about 1 out of 10
estimates are expected to deviate more than 3 times the RMSE. If only estimates which deviate with 5
or less from the true total can be considered acceptable, we should reject estimates withRMSE>5/3 and
be prepared that 1 out of 10 rejections should have been accepted.

4. Empirical Example 1
4.1 Experiments

The first illustration of the methods described above uses data from the Norwegian Agriculture and
Forestry Surveys carried out by Statistics Norway (SSB). The experiment demonstrates the use of an
ANN to discriminate between acceptable and deficient records in editing control. A decennial
agricultural census was taken in 1989. Using this as a frame, a stratified sample was selected for
annual surveys. The data collected for the census and the annual surveys have been edited by
agricultural subject matter specialists.

In 1996, SSB decided to evaluate a computerized control compared with human editing of the annual
surveys. Unit data collected for two counties were recorded in three alternative versions: theraw data
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records from the questionnaires, the corrected data records based on the computerized control rules
supplemented by human correction of records failing the control, and theedited data records from the
questionnaires completely edited by the specialists. Evaluation reports concluded that the data
controlled by a rule-based computerized method followed by a manual correction of records rejected by
the control gave data which, when aggregated, deviated insignificantly in some fields, but not in all,
from aggregates on data both controlled and corrected by specialists.

Experiments were initiated to investigate: 1) if it is possible from a sample of edited records to train a
neural network to function like a human expert and detect the same deficiencies in raw records as
human editors do, and 2) if a neural network can be trained on a sample of deficient raw records and
the corresponding edited records to perform the same corrections as the human editors do. Some
results from the first part will be reported below, while the second part of the experiment is still being
worked on.

The experiments were based on records for n+N=3030 units. From these, n=1030 records were
randomly selected for training a two-layer ANN, while the remaining N=2000 were reserved for
testing. Each record comprised 593 bytes distributed to 154 variables. The control task to be
simulated was to classify each raw record as either acceptable or suspicious.

Since the ANN used was based on sigmoid output functions, the output value would be within the range
0<f(x,...x;x y w)<I. The value can be considered as an estimate of the probability that the record is
correct. The following decision rule was therefore established based on the outcome of the ANN:

S . xxg s W) >=a = 0.5 then the record is classified as correct @)
< a = 0.5 then the record is classified as suspicious  for i=1..N.

In this case, the f can be considered a discriminant function and 0.5 a cutting point defining the
classification regions. The a reflects the cutting point with a minimum risk for misclassification if the
loss of rejecting a record which should have been accepted is equal to the loss of accepting a record
which should have been rejected. If the statistical producer has a conservative strategy and tends to
think that it is better to inspect too much than too little, a should be set > 0.5, or vice versa.

4.2 Training the Control Function

The ANN used consisted of 154 input variables, two layers of weights connected by 154 hidden
neurons and one output neuron, the decision variable. In total, this model included 24,025 weights to
be determined. To avoid the problems of multiple local minima, a problem frequently met with this
type of model, the weights were given small initial random values and a learning rate which decreased
linearly in value from 0.5 to 0.1 as the learning improved was used. The training function learned to
correctly predict the values of the decision variable for the 1030 records of the training set during 2035
iterations.

4.3 Testing the Control Function

The practical use of the trained function depends, however, on how well it performs on an independent
set of records. It was, therefore, applied to predict the decision variable values for and classify the
2000 test records not used in the training. When the classified records were compared with records
edited by the editors, it was found that the control function had failed to predict 514, or 26 percent of
the raw records correctly. Two types of misclassification appeared. Type 1 misclassification errors
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included correct records which were predicted to be erroneous. Type 2 errors included deficient
records which were incorrectly predicted as acceptable by the control function. We assumed that all
records classified as incorrect should be inspected by the editors who would identify the 252 Type 1
errors. Among the 2000 test records, 262 records were classified as correct by the control function.
These 13 percent erroneous records would not be detected by the editors.

Table 1: Records’ Prediction Compared with True Status

True
Predicted Correct Incorrect Sum
Correct 317 262 579
Incorrect 252 1169 1452
Sum 569 1431 2000

4.4 Comparing the Two Sets of Corrected Records

A first task was to compare the above result from ANN control with the results from the control by
means of the computerized rule control used in the SSB evaluation. The number of records from this
computer control which differed from the version which had been controlled and corrected by experts
was 722, or 36 percent of the 2000 records. Compared with the 13 percent of the records which would
not be corrected using the ANN-based control, a preliminary conclusion was that the ANN control
function detected more errors than the SSB computerized control.

After eliminating six fields with data irrelevant for this purpose, 149 totals were generated from the
records resulting from the SSB control, the records from the ANN control, and the records controlled
by the experts. The average relative errors,

E = Zl (t:tat - ttrue) /ttrue | /]49 > (8)
were computed and gave the results Eg; = 0.13 and E,,, = 0.06.
The average deviation for the totals from the ANN control were only 50 percent of those resulting from
the SSB control. The ANN control rejected 1452 records out of the 2000 for inspection by the experts,
implying that the experts had to inspect about 73 percent of the records, or a saving of only 27 percent.

Unfortunately, it is impossible to deduce from the available data sets exactly how many records of the
raw data set were rejected by the SSB computerized control for inspection by the experts.

The next question, which so far has not been answered, is if some of the 1452 records could have been
processed by an ANN imputation model instead of editors.

5. Empirical Example II
5.1 Experiments
Extensive experiments with ANN have been performed on Norwegian data from the 1990 Population

Census [Nordbotten 1996]. The data used in this presentation are from a municipality with 17,326
individuals distributed to 56 small census tracts, and the aim of the presentation is to illustrate mass
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imputation of individual data for deriving small area statistics. To be quite correct, the areas may not
be small in space, but they contain a small number of statistical units.

The municipality is located in the middle part of Norway with farming, some manufacturing and
transport as its main industries. The average population of a small area was 310 inhabitants. The
majority of areas had from 100 to 300 inhabitants, while some had less than 50 inhabitants.

The 1990 Census in Norway was based partly on administrative data available for each inhabitant,
referred to as x-variables, and partly on data collected particularly for the census, referred to as
y-variables. For most municipalities, observations of y-variables were collected from random samples
containing about 10 percent of the inhabitants. The municipality used in the study, however, wanted
statistics on the y-variables based on complete counts for all inhabitants and paid for the additional
observations itself. The data from this municipality were thus well suited for the type of experiments
we wanted to perform. In the experiments, we simulated a situation in which a normal sample survey
was taken and imputed values for the y-variables for each individual in the remaining population were
computed. Since computed totals and accuracy predictions could be compared with observed target
totals and evaluated in this municipality, the data represented a unique possibility for an evaluation
study.

Two sets of y-variables were included in the experiment, in total 15 variables, which were assumed to
have been observed in the sample survey, while 97 auxiliary x-variables were available from
administrative registers for all individuals. The 15y-variables were about cohabitation and the means
of transportation to work. Two separate, simultaneous ANN with together 15 non-linear imputation
functions were trained and used to generate imputations for the inhabitants not included in the sample.
Both models used the individual values of the 97 x-variables as independent variables for imputing the
individual y-variables. In addition, both models included 25 hidden neurons. The details about design
and construction of the neural network models used for imputations and the computation of the mean
square errors have been described elsewhere [Nordbotten 1996].

The sample drawn from the population in the municipality was divided into two random, mutually
exclusive samples. The first training sample, S”, comprised 1845 individuals and was used to
determine altogether 5240 parameters for the two imputation models. The second sample,S?, with
only 165 individuals, was used to estimate mean square errors and biases of the imputed variables.

The observed y-values for each of the 2,007 inhabitants in the two samples were used in computing the
first term of formula (3) for computing the imputation estimates. The second term of the estimates for
the remaining 15,319 individuals outside the samples observed was obtained as the sum of the
individual imputed y ~values.

Eight hundred and forty Y “totals were estimated for the 56 areas. The corresponding target Y-totals
were aggregated as references from the “true” y-values for all individuals. For each estimated total,
the imputation error RMSE was computed according to formula (4). In order to test the validity of
applying the computed RMSEs for predicting the accuracy of the estimates, all imputation estimates
with RMSE > 2.5 were identified.

Relying on the Central Limit Theorem, this condition is equivalent to predicting that these estimates
will not deviate from targets with more than 5 individuals with a confidence of 0.95. Alternatively, if
we rely on the Tchebycheff Inequality Theorem, the confidence is reduced to about 0.75 for the same
accuracy predictions.
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5.2 Estimates and Accuracy Predictions

The last row of Table 2 shows that 658 of the 840 imputation estimates deviated from their target totals
with 5 or less individuals. Other experiments showed that only 4 percent of the estimates deviated
from their targets with more than 10 individuals. This indicates that the imputation estimates are quite
accurate and should be useful information. The question is, are we able to predict which of these
estimates satisfy our conditions that only estimates with deviation 5 or less should be released?

Table 2: Predicted and Observed Accuracy for
Imputation Estimates of 840 Totals in Small Areas
Observed Observed Sum
|Y-Y| <=5 |Y-Y|>5
Predicted 433 29 462
|Y-Y| <=5

Predicted 255 153 387
|Y-Y|>5

Sum 658 182 840

Table 2 also indicates that 462 estimates were predicted to satisfy the condition of a deviation with 5 or
less individuals. Of these, nearly 94 percent were correctly predicted, i.e. only 29 errors of Type 2
occurred. From the assumption about normal distributions, we would expect that the number of Type 1
errors, rejecting estimates that satisfy the requirement, would be less than 42, or 5 percent of the
estimates. The table shows, however, that 225 estimates were incorrectly predicted to deviate from
their targets with more than 5 inhabitants. If an application is such that Type 2 errors are relatively
expensive while lost opportunities represented by Type 1 errors are of little concern, this would
probably be an acceptable set of predictions.

We may suspect that for so many small populations, the use of the Tchebycheff Theorem is more
realistic than assuming a normal distribution. Using RMSE > 2.5 subject to the assumptions of this
theorem means that the level of confidence for the predictions is reduced to 0.75. This corresponds to
an expected number of Type 1 errors about 210, which makes the 225 observed more acceptable. If in
this case we require a confidence level of 0.95, the condition for rejection of an estimate must be
changed to RMSE >4.3. A possible solution being investigated is to use RMSE > 4.3 estimates for
areas with population below a certain size, for example 100 and less individuals, andRMSE > 2.5 for
areas with population above this size.

6. Final Remarks

The first experiment demonstrated how ANN can be used for editing control of agriculture data and
provide results which may compete with computer control methods. It is expected that further
experiments will give answers to how well ANN can also be trained to make imputations for rejected
observations.

The second experiment reported in this paper confirms that useful statistics for small areas/populations

can be obtained by aggregating individually imputed variable values. The imputed variable values for
units not observed were based on an ANN trained from an observed sample of the area population and
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available auxiliary data. Our results indicate that individual imputed values can be aggregated to useful
estimates of totals for areas with too few units for the use of traditional estimates.

Accuracy predictions for the imputation estimates can be based on mean square errors for the individual
deviations between imputed and target values estimated from a small sample independent of the ANN
training sample.
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